

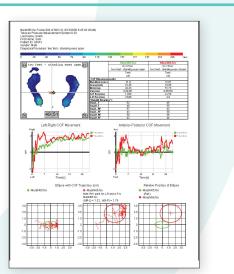
SAMTM Sway & Posture Analysis Get the Complete Story

Advance Your Practice with Technology

Get information you need to assess and document pre- and posttreatments in relation to the patient's sway, posture, and/or balance control with Tekscan's Sway Analysis Module (SAM™). SAM is the ideal tool to analyze sway and assess postural stability by detecting and measuring key stability parameters such as center of force (CoF) motion, left/right foot weight distribution and front-to-back weight distribution.

- Monitor the progress of foot function & body sway during treatments
- Assess the human body's ability to maintain equilibrium while standing
- Immediately detect asymmetries with weight bearing

° Area of Sway: Pre vs Post


	MurpN66.fsx	MurpN65.fsx
	Dx / Proc: two feet - standing eyes closed Task: n/a	Dx/Proc: two feet - standing eyes open Task: n/a
COF Measureme	nts	
Duration (sec)	31.81	31.9
Area(cm2)	18.85	10.45
Dist(cm)	51.73	42.43
Var(cm)	0.06378	0.04451
A-P Exc(cm)	4.218	1.838
L-R Exc(cm)	4.9	3.648
Weight Bearing %	6	*
Avg L-T	45	52
Avg R-T	55	48
Avg L-RF	42	57
Avg L-FF	58	43

Variance Comparison Table (Weightbearing & CoF Excursion)

Quick and Easy Exams

In under two minutes, you can determine the effectiveness of a treatment. Simply have your subject stand on the Tekscan pressure mat and with the click of the mouse, you get objective, quantifiable data in a clear, easy-to-read format. Print an automated report to document treatment.

Sway Analysis in Practice

Background: A 9 year-old boy previously treated using chiropractic manipulations and the MatScan pressure measurement platform.

Known Issues: Displaced cervical vertebra and ribs, and blocked sacroiliac (SI) joint due to falls. Visual body posture assessment also revealed segment misalignments. These included hip and shoulder drops and trunk anterior-posterior rotation.

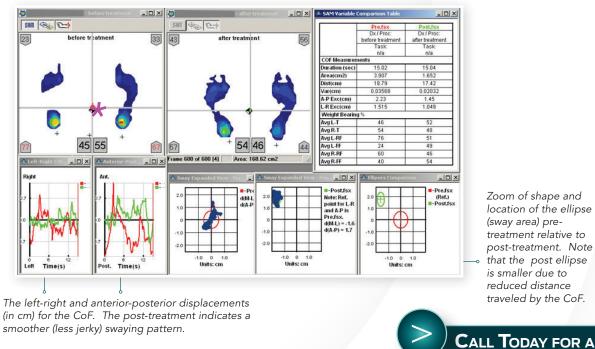
Treatment Approach

Several manipulations were done to the pelvis, spine, and head. The SAM assessment following the manipulations revealed improvements. By the 2nd week follow-up visit, the patient returned to his pre-treatment asymmetries. X-rays revealed the presence of leg length discrepancy (LLD) with the right side shorter.

A right heel lift was prescribed and manipulations were repeated, resulting in the symmetries and alignments remaining stable. When the patient returned 2 weeks later for follow-up visit, the symmetries and alignments were still present and in effect.

Parameters captured & assessed with the MatScan:

- Plantar pressure profiles
- Percent body weight-bearing
- Percent area of weight-bearing (contact) for left vs. right foot.
- Trajectory for the center of force (CoF)


SAM was then used to calculate and display biomechanical parameters relating to body sway and weight-bearing of the feet.

(1.800.248.3669

SAM Data & Analysis

SAM data shows improvement in several parameters:

- Reduction in the area of sway, total distance traveled by the center of force (CoF), reduced variability in distance traveled by CoF, and also reduced anterior-posterior and leftright excursions of the CoF
- Percent weight-bearing and percent contact area left vs. right foot improved with nearly identical pressure distribution post-treatment
- Average (avg) weight-bearing symmetries improved overall, specifically forefoot and rearfoot

Zoom of shape and location of the ellipse (sway area) pretreatment relative to post-treatment. Note that the post ellipse is smaller due to reduced distance traveled by the CoF.

DEMONSTRATION

Fekscan®

+1.617.464.4281

🐱 info@tekscan.com